Перевод: с английского на все языки

со всех языков на английский

наименование изготовителя

  • 1 name of the maker

    English-russian dctionary of contemporary Economics > name of the maker

  • 2 assembly manufacturer

    1. сборщик НКУ
    2. изготовитель НКУ

     

    изготовитель НКУ
    Организация, которая выполнила разработку конструкции, изготовление и необходимую проверку на соответствие НКУ требованиям конкретного стандарта.
    [ ГОСТ Р МЭК 61439-1-2013]

    EN

    original manufacturer
    organization that has carried out the original design and the associated verification of an assembly in accordance with the relevant assembly standard
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d'origine
    organisme qui a réalisé la conception d'origine et la vérification associée d’un ensemble conformément à la norme d’ensembles applicable
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    6.1 ASSEMBLY designation marking

    The ASSEMBLY manufacturer shall provide each ASSEMBLY with one or more labels, marked in a durable manner and located in a place such that they are visible and legible when the ASSEMBLY is installed and in operation.

    Compliance is checked according to the test of 10.2.7 and by inspection.

    The following information regarding the ASSEMBLY shall be provided on the designation label(s):
    a) ASSEMBLY manufacturer's name or trade mark (see 3.10.2);
    b) type designation or identification number or any other means of identification, making it possible to obtain relevant information from the ASSEMBLY manufacturer;
    c) means of identifying date of manufacture;
    d) IEC 61439-X (the specific part “X” shall be identified).

    NOTE The relevant ASSEMBLY standard may specify where additional information is to be provided on the designation label.


    [BS EN 61439-1:2009]

    6.1 Маркировка

    Изготовитель НКУ должен предусмотреть на каждом НКУ одну или несколько табличек со стойкой к внешним воздействиям маркировкой, которые после установки и в процессе эксплуатации НКУ должны быть расположены на видном месте.

    Соответствие проверяют испытанием по 10.2.7 и внешним осмотром.

    На паспортной табличке должна быть приведена информация об НКУ, указанная в перечислениях а) — d):
    a) наименование изготовителя или его товарный знак (см. 3.10.2):
    b) обозначение типа, идентификационный или другой знак, позволяющий получить необходимую информацию от изготовителя;
    c) обозначение даты изготовления;
    d) обозначение настоящего стандарта.

    Примечание — На паспортной табличке может быть приведено обозначение конкретного стандарта на НКУ, если требуется дополнительная информация.


    [ ГОСТ Р МЭК 61439.1-2013]


    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    FR

     

    изготовитель НКУ
    Организация, которая выполнила разработку конструкции, изготовление и необходимую проверку на соответствие НКУ требованиям конкретного стандарта.
    [ ГОСТ Р МЭК 61439-1-2013]

    EN

    original manufacturer
    organization that has carried out the original design and the associated verification of an assembly in accordance with the relevant assembly standard
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d'origine
    organisme qui a réalisé la conception d'origine et la vérification associée d’un ensemble conformément à la norme d’ensembles applicable
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    6.1 ASSEMBLY designation marking

    The ASSEMBLY manufacturer shall provide each ASSEMBLY with one or more labels, marked in a durable manner and located in a place such that they are visible and legible when the ASSEMBLY is installed and in operation.

    Compliance is checked according to the test of 10.2.7 and by inspection.

    The following information regarding the ASSEMBLY shall be provided on the designation label(s):
    a) ASSEMBLY manufacturer's name or trade mark (see 3.10.2);
    b) type designation or identification number or any other means of identification, making it possible to obtain relevant information from the ASSEMBLY manufacturer;
    c) means of identifying date of manufacture;
    d) IEC 61439-X (the specific part “X” shall be identified).

    NOTE The relevant ASSEMBLY standard may specify where additional information is to be provided on the designation label.


    [BS EN 61439-1:2009]

    6.1 Маркировка

    Изготовитель НКУ должен предусмотреть на каждом НКУ одну или несколько табличек со стойкой к внешним воздействиям маркировкой, которые после установки и в процессе эксплуатации НКУ должны быть расположены на видном месте.

    Соответствие проверяют испытанием по 10.2.7 и внешним осмотром.

    На паспортной табличке должна быть приведена информация об НКУ, указанная в перечислениях а) — d):
    a) наименование изготовителя или его товарный знак (см. 3.10.2):
    b) обозначение типа, идентификационный или другой знак, позволяющий получить необходимую информацию от изготовителя;
    c) обозначение даты изготовления;
    d) обозначение настоящего стандарта.

    Примечание — На паспортной табличке может быть приведено обозначение конкретного стандарта на НКУ, если требуется дополнительная информация.


    [ ГОСТ Р МЭК 61439.1-2013]


    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    FR

     

    сборщик НКУ
    Организация, ответственная за сборку НКУ.
    Примечание. Разработчик и сборщик НКУ могут быть разными организациями.
    [ ГОСТ Р МЭК 61439-1-2012]

    EN

    assembly manufacturer
    organization taking the responsibility for the completed assembly
    NOTE The assembly manufacturer may be a different organisation to the original manufacturer.
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d’ensembles
    organisme prenant la responsabilité de l’ensemble fini
    NOTE Le constructeur d’ensembles peut être un organisme différent du constructeur d'origine.
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    FR

    • constructeur d’ensembles

    Англо-русский словарь нормативно-технической терминологии > assembly manufacturer

  • 3 electrical characteristics of assemblies

    1. электрические характеристики НКУ

     

    электрические характеристики НКУ
    -
    [Интент]

    Параллельные тексты EN-RU

    The Standard IEC 60439-1 identifies the nominal characteristics to be assigned to each assembly, defines the environmental service conditions, establishes the mechanical requirements and gives prescriptions about:
    • insulation
    • thermal behaviour
    • short-circuit withstand strength
    • protection against electrical shock
    • degree of protection of the enclosure
    • installed components, internal separation and connections inside the assembly
    • electronic equipment supply circuits.

    Information specified under items a) and b) shall be given on the nameplate according to the Standard.
    Information from items c) to t), where applicable, shall be given either on the nameplates or in the technical documentation of the manufacturer:
    a) manufacturer ’s name or trade mark;
    b) type designation or identification number, or any other means of identification making it possible to obtain relevant information from the manufacturer;
    c) IEC 60439-1;
    d) type of current (and frequency, in the case of a.c.);
    e) rated operational voltages;
    f) rated insulation voltages (rated impulse withstand voltage, when declared by the manufacturer);
    g) rated voltages of auxiliary circuits, if applicable;
    h) limits of operation;
    j) rated current of each circuit, if applicable;
    k) short-circuit withstand strength;
    l) degree of protection;
    m) measures for protection of persons;
    n) service conditions for indoor use, outdoor use or special use, if different from the usual service conditions.
    Pollution degree when declared by the manufacturer;
    o) types of system earthing (neutral conductor) for which the ASSEMBLY is designed;
    p) dimensions given preferably in the order of height, width (or length), depth;
    q) weight;
    r) form of internal separation;
    s) types of electrical connections of functional units;
    t) environment 1 or 2.

    [ABB]

    Стандарт МЭК 60439-1 определяет номинальные характеристики НКУ, условия эксплуатации, требования к механической части конструкции, а также следующие параметры:
    • изоляция;
    • превышение температуры;
    • прочность к воздействию тока короткого замыкания;
    защита от поражения электрическим током;
    степень защиты, обеспечиваемая оболочкой;
    • комплектующие элементы, внутреннее разделение НКУ ограждениями и перегородками, электрические соединения внутри НКУ;
    • требования к цепям питания электронного оборудования.

    Информация, относящаяся к пунктам а) и b), должна быть указана на паспортной табличке, соответствующей данному стандарту.
    Информация, приведенная в пунктах с) … d), должна быть указана либо на паспортной табличке, либо в технической документации изготовителя:
    a) наименование изготовителя или товарный знак;
    b) обозначение типа, условного номера или другого знака, позволяющих получить необходимую информацию от изготовителя;
    c) МЭК 60439-1;
    d) род тока (а для переменно тока и частота.);
    e) номинальные рабочие напряжения;
    f) номинальное напряжение изоляции (или указываемое изготовителем номинальное импульсное выдерживаемое напряжение);
    g) номинальное напряжение вспомогательных цепей, если таковые имеются;
    h) предельные отклонения параметров;
    j) номинальный ток каждой цепи, если таковые приводят;
    k) прочность к воздействию короткого замыкания;
    l) степень защиты;
    m) меры защиты персонала;
    n) нормальные условия эксплуатации при внутренней или наружной установке, а также специальные условия эксплуатации, если они отличаются от нормальных.
    Степень загрязнения, если она указывается изготовителем;
    o) вид системы заземления (режим нейтрали), который был принят при проектировании НКУ;
    p) размеры, приводимые в следующей последовательности: высота, ширина (или длина), глубина;
    q) масса;
    r) вид внутреннего разделения;
    s) типы электрических соединений функциональных блоков;
    t) окружающая среда 1 или 2.

    [Перевод Интент]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    Англо-русский словарь нормативно-технической терминологии > electrical characteristics of assemblies

  • 4 original equipment manufacturer

    1. производитель комплектного оборудования
    2. изготовитель оборудования
    3. изготовитель НКУ

     

    изготовитель НКУ
    Организация, которая выполнила разработку конструкции, изготовление и необходимую проверку на соответствие НКУ требованиям конкретного стандарта.
    [ ГОСТ Р МЭК 61439-1-2013]

    EN

    original manufacturer
    organization that has carried out the original design and the associated verification of an assembly in accordance with the relevant assembly standard
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d'origine
    organisme qui a réalisé la conception d'origine et la vérification associée d’un ensemble conformément à la norme d’ensembles applicable
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    6.1 ASSEMBLY designation marking

    The ASSEMBLY manufacturer shall provide each ASSEMBLY with one or more labels, marked in a durable manner and located in a place such that they are visible and legible when the ASSEMBLY is installed and in operation.

    Compliance is checked according to the test of 10.2.7 and by inspection.

    The following information regarding the ASSEMBLY shall be provided on the designation label(s):
    a) ASSEMBLY manufacturer's name or trade mark (see 3.10.2);
    b) type designation or identification number or any other means of identification, making it possible to obtain relevant information from the ASSEMBLY manufacturer;
    c) means of identifying date of manufacture;
    d) IEC 61439-X (the specific part “X” shall be identified).

    NOTE The relevant ASSEMBLY standard may specify where additional information is to be provided on the designation label.


    [BS EN 61439-1:2009]

    6.1 Маркировка

    Изготовитель НКУ должен предусмотреть на каждом НКУ одну или несколько табличек со стойкой к внешним воздействиям маркировкой, которые после установки и в процессе эксплуатации НКУ должны быть расположены на видном месте.

    Соответствие проверяют испытанием по 10.2.7 и внешним осмотром.

    На паспортной табличке должна быть приведена информация об НКУ, указанная в перечислениях а) — d):
    a) наименование изготовителя или его товарный знак (см. 3.10.2):
    b) обозначение типа, идентификационный или другой знак, позволяющий получить необходимую информацию от изготовителя;
    c) обозначение даты изготовления;
    d) обозначение настоящего стандарта.

    Примечание — На паспортной табличке может быть приведено обозначение конкретного стандарта на НКУ, если требуется дополнительная информация.


    [ ГОСТ Р МЭК 61439.1-2013]


    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    FR

     

    изготовитель оборудования
    Обозначение компаний, производящих оборудование, которое впоследствии выпускается на рынок и продается другим фирмам под их собственными названиями.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    EN

     

    производитель комплектного оборудования
    Компания, приобретающая комплектующие изделия одного или нескольких изготовителей и после комплексной сборки (иногда с незначительной доработкой) выпускающая готовую продукцию под своей маркой. Доработка в основном связана с введением вспомогательных аппаратных и программных средств, необходимых для тестирования и отладки OEM-оборудования, а также реализации новых возможностей, обеспечиваемых по заказу потребителя.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > original equipment manufacturer

  • 5 original manufacturer

    1. разработчик НКУ
    2. изготовитель НКУ

     

    изготовитель НКУ
    Организация, которая выполнила разработку конструкции, изготовление и необходимую проверку на соответствие НКУ требованиям конкретного стандарта.
    [ ГОСТ Р МЭК 61439-1-2013]

    EN

    original manufacturer
    organization that has carried out the original design and the associated verification of an assembly in accordance with the relevant assembly standard
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d'origine
    organisme qui a réalisé la conception d'origine et la vérification associée d’un ensemble conformément à la norme d’ensembles applicable
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    6.1 ASSEMBLY designation marking

    The ASSEMBLY manufacturer shall provide each ASSEMBLY with one or more labels, marked in a durable manner and located in a place such that they are visible and legible when the ASSEMBLY is installed and in operation.

    Compliance is checked according to the test of 10.2.7 and by inspection.

    The following information regarding the ASSEMBLY shall be provided on the designation label(s):
    a) ASSEMBLY manufacturer's name or trade mark (see 3.10.2);
    b) type designation or identification number or any other means of identification, making it possible to obtain relevant information from the ASSEMBLY manufacturer;
    c) means of identifying date of manufacture;
    d) IEC 61439-X (the specific part “X” shall be identified).

    NOTE The relevant ASSEMBLY standard may specify where additional information is to be provided on the designation label.


    [BS EN 61439-1:2009]

    6.1 Маркировка

    Изготовитель НКУ должен предусмотреть на каждом НКУ одну или несколько табличек со стойкой к внешним воздействиям маркировкой, которые после установки и в процессе эксплуатации НКУ должны быть расположены на видном месте.

    Соответствие проверяют испытанием по 10.2.7 и внешним осмотром.

    На паспортной табличке должна быть приведена информация об НКУ, указанная в перечислениях а) — d):
    a) наименование изготовителя или его товарный знак (см. 3.10.2):
    b) обозначение типа, идентификационный или другой знак, позволяющий получить необходимую информацию от изготовителя;
    c) обозначение даты изготовления;
    d) обозначение настоящего стандарта.

    Примечание — На паспортной табличке может быть приведено обозначение конкретного стандарта на НКУ, если требуется дополнительная информация.


    [ ГОСТ Р МЭК 61439.1-2013]


    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    FR

     

    разработчик НКУ
    -
    [Интент]

    разработчик НКУ
    Организация, которая выполнила разработку конструкции и необходимую проверку на соответствие НКУ требованиям конкретного стандарта.
    [ ГОСТ Р МЭК 61439.1-2012]

    EN

    original manufacturer
    organization that has carried out the original design and the associated verification of an assembly in accordance with the relevant assembly standard
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d'origine
    organisme qui a réalisé la conception d'origine et la vérification associée d’un ensemble conformément à la norme d’ensembles applicable
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    FR

    Англо-русский словарь нормативно-технической терминологии > original manufacturer

  • 6 panel builder

    1. разработчик НКУ
    2. изготовитель НКУ

     

    изготовитель НКУ
    Организация, которая выполнила разработку конструкции, изготовление и необходимую проверку на соответствие НКУ требованиям конкретного стандарта.
    [ ГОСТ Р МЭК 61439-1-2013]

    EN

    original manufacturer
    organization that has carried out the original design and the associated verification of an assembly in accordance with the relevant assembly standard
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d'origine
    organisme qui a réalisé la conception d'origine et la vérification associée d’un ensemble conformément à la norme d’ensembles applicable
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    6.1 ASSEMBLY designation marking

    The ASSEMBLY manufacturer shall provide each ASSEMBLY with one or more labels, marked in a durable manner and located in a place such that they are visible and legible when the ASSEMBLY is installed and in operation.

    Compliance is checked according to the test of 10.2.7 and by inspection.

    The following information regarding the ASSEMBLY shall be provided on the designation label(s):
    a) ASSEMBLY manufacturer's name or trade mark (see 3.10.2);
    b) type designation or identification number or any other means of identification, making it possible to obtain relevant information from the ASSEMBLY manufacturer;
    c) means of identifying date of manufacture;
    d) IEC 61439-X (the specific part “X” shall be identified).

    NOTE The relevant ASSEMBLY standard may specify where additional information is to be provided on the designation label.


    [BS EN 61439-1:2009]

    6.1 Маркировка

    Изготовитель НКУ должен предусмотреть на каждом НКУ одну или несколько табличек со стойкой к внешним воздействиям маркировкой, которые после установки и в процессе эксплуатации НКУ должны быть расположены на видном месте.

    Соответствие проверяют испытанием по 10.2.7 и внешним осмотром.

    На паспортной табличке должна быть приведена информация об НКУ, указанная в перечислениях а) — d):
    a) наименование изготовителя или его товарный знак (см. 3.10.2):
    b) обозначение типа, идентификационный или другой знак, позволяющий получить необходимую информацию от изготовителя;
    c) обозначение даты изготовления;
    d) обозначение настоящего стандарта.

    Примечание — На паспортной табличке может быть приведено обозначение конкретного стандарта на НКУ, если требуется дополнительная информация.


    [ ГОСТ Р МЭК 61439.1-2013]


    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    FR

     

    разработчик НКУ
    -
    [Интент]

    разработчик НКУ
    Организация, которая выполнила разработку конструкции и необходимую проверку на соответствие НКУ требованиям конкретного стандарта.
    [ ГОСТ Р МЭК 61439.1-2012]

    EN

    original manufacturer
    organization that has carried out the original design and the associated verification of an assembly in accordance with the relevant assembly standard
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d'origine
    organisme qui a réalisé la conception d'origine et la vérification associée d’un ensemble conformément à la norme d’ensembles applicable
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Тематики

    • НКУ (шкафы, пульты,...)

    EN

    FR

    Англо-русский словарь нормативно-технической терминологии > panel builder

  • 7 panel-builder

    1. изготовитель НКУ

     

    изготовитель НКУ
    Организация, которая выполнила разработку конструкции, изготовление и необходимую проверку на соответствие НКУ требованиям конкретного стандарта.
    [ ГОСТ Р МЭК 61439-1-2013]

    EN

    original manufacturer
    organization that has carried out the original design and the associated verification of an assembly in accordance with the relevant assembly standard
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d'origine
    organisme qui a réalisé la conception d'origine et la vérification associée d’un ensemble conformément à la norme d’ensembles applicable
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    6.1 ASSEMBLY designation marking

    The ASSEMBLY manufacturer shall provide each ASSEMBLY with one or more labels, marked in a durable manner and located in a place such that they are visible and legible when the ASSEMBLY is installed and in operation.

    Compliance is checked according to the test of 10.2.7 and by inspection.

    The following information regarding the ASSEMBLY shall be provided on the designation label(s):
    a) ASSEMBLY manufacturer's name or trade mark (see 3.10.2);
    b) type designation or identification number or any other means of identification, making it possible to obtain relevant information from the ASSEMBLY manufacturer;
    c) means of identifying date of manufacture;
    d) IEC 61439-X (the specific part “X” shall be identified).

    NOTE The relevant ASSEMBLY standard may specify where additional information is to be provided on the designation label.


    [BS EN 61439-1:2009]

    6.1 Маркировка

    Изготовитель НКУ должен предусмотреть на каждом НКУ одну или несколько табличек со стойкой к внешним воздействиям маркировкой, которые после установки и в процессе эксплуатации НКУ должны быть расположены на видном месте.

    Соответствие проверяют испытанием по 10.2.7 и внешним осмотром.

    На паспортной табличке должна быть приведена информация об НКУ, указанная в перечислениях а) — d):
    a) наименование изготовителя или его товарный знак (см. 3.10.2):
    b) обозначение типа, идентификационный или другой знак, позволяющий получить необходимую информацию от изготовителя;
    c) обозначение даты изготовления;
    d) обозначение настоящего стандарта.

    Примечание — На паспортной табличке может быть приведено обозначение конкретного стандарта на НКУ, если требуется дополнительная информация.


    [ ГОСТ Р МЭК 61439.1-2013]


    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    FR

    Англо-русский словарь нормативно-технической терминологии > panel-builder

  • 8 switchboard manufacturer

    1. изготовитель НКУ

     

    изготовитель НКУ
    Организация, которая выполнила разработку конструкции, изготовление и необходимую проверку на соответствие НКУ требованиям конкретного стандарта.
    [ ГОСТ Р МЭК 61439-1-2013]

    EN

    original manufacturer
    organization that has carried out the original design and the associated verification of an assembly in accordance with the relevant assembly standard
    [IEC 61439-1, ed. 2.0 (2011-08)]

    FR

    constructeur d'origine
    organisme qui a réalisé la conception d'origine et la vérification associée d’un ensemble conformément à la norme d’ensembles applicable
    [IEC 61439-1, ed. 2.0 (2011-08)]

    Параллельные тексты EN-RU

    6.1 ASSEMBLY designation marking

    The ASSEMBLY manufacturer shall provide each ASSEMBLY with one or more labels, marked in a durable manner and located in a place such that they are visible and legible when the ASSEMBLY is installed and in operation.

    Compliance is checked according to the test of 10.2.7 and by inspection.

    The following information regarding the ASSEMBLY shall be provided on the designation label(s):
    a) ASSEMBLY manufacturer's name or trade mark (see 3.10.2);
    b) type designation or identification number or any other means of identification, making it possible to obtain relevant information from the ASSEMBLY manufacturer;
    c) means of identifying date of manufacture;
    d) IEC 61439-X (the specific part “X” shall be identified).

    NOTE The relevant ASSEMBLY standard may specify where additional information is to be provided on the designation label.


    [BS EN 61439-1:2009]

    6.1 Маркировка

    Изготовитель НКУ должен предусмотреть на каждом НКУ одну или несколько табличек со стойкой к внешним воздействиям маркировкой, которые после установки и в процессе эксплуатации НКУ должны быть расположены на видном месте.

    Соответствие проверяют испытанием по 10.2.7 и внешним осмотром.

    На паспортной табличке должна быть приведена информация об НКУ, указанная в перечислениях а) — d):
    a) наименование изготовителя или его товарный знак (см. 3.10.2):
    b) обозначение типа, идентификационный или другой знак, позволяющий получить необходимую информацию от изготовителя;
    c) обозначение даты изготовления;
    d) обозначение настоящего стандарта.

    Примечание — На паспортной табличке может быть приведено обозначение конкретного стандарта на НКУ, если требуется дополнительная информация.


    [ ГОСТ Р МЭК 61439.1-2013]


    Тематики

    • НКУ (шкафы, пульты,...)

    Синонимы

    EN

    FR

    Англо-русский словарь нормативно-технической терминологии > switchboard manufacturer

  • 9 name of the maker

    Универсальный англо-русский словарь > name of the maker

  • 10 manufacturer's name

    English-Russian dictionary of terminology cable technology > manufacturer's name

  • 11 name of the producer

    English-Russian dictionary of terminology cable technology > name of the producer

  • 12 manufacturer's name

    English-russian dctionary of contemporary Economics > manufacturer's name

  • 13 manufacturer's name

    English-russian dctionary of diplomacy > manufacturer's name

  • 14 manufacturer's name

    Универсальный англо-русский словарь > manufacturer's name

  • 15 trade name

    English-Russian base dictionary > trade name

  • 16 trademark

    ['treɪdmɑːk]
    1) Общая лексика: марка, оспариваемый товарный знак, отличительный знак, снабжать торговой маркой, фирменный знак, товарный знак (название, символ, девиз или эмблема, используемые изготовителем для отличия своих товаров от изделий других изготовителей), Фирменный, торговый знак, официально регистрировать торговую марку
    2) Разговорное выражение: коронный
    5) Экономика: заводская марка
    6) Бухгалтерия: товарный знак (марка или её часть, обеспеченные правовой защитой), торговая марка (один из возможных элементов нематериальных активов (intangible assets))
    9) Образное выражение: визитная карточка
    10) Патенты: охранять товарным знаком, маркировать товарным знаком, товарный знак (прошедшее государственную регистрацию обозначение, обладающее способностью отличать товары или услуги одних юридических или физических лиц от товаров или услуг других юридических или физических лиц)

    Универсальный англо-русский словарь > trademark

  • 17 trade mark

    пат., марк. = trademark

    * * *
    abbrev.: TM trade mark торговая марка: оригинальное название, символ, лозунг или эмблема, которые призваны указать на производителя товара или услуг и используются в их рекламе; торговая марка должна быть официально зарегистрирована, и тогда ее использование принадлежит исключительно владельцу; однако права владельца могут существовать и в случае доказанности незаконного использования данной марки; в балансе компании торговая марка отражается как "неосязаемый" (нематериальный) актив; на практике торговые марки как активы могут амортизироваться со сроком до 40 лет; см. intangible asset.
    * * *
    ТОВАРНЫЙ ЗНАК, ТОРГОВАЯ МАРКА
    . обозначения, способные отличать соответственно товары и услуги одних юридических и физических лиц от однородных товаров и услуг других юридических и физических лиц. На зарегистрированный Т.з. выдается свидетельство. В качестве Т.з. могут быть зарегистрированы словесные, объемные и другие обозначения или их комбинации. Т.з. может быть зарегистрирован в любом цвете или цветовом сочетании. Различают торговую марку (ее иногда называют фирменным знаком) - знак-символ, рисунок и т.д., которые указывают на изготовителя товаров, идентифицируют продукт с его изготовителем и продавцом, и торговое наименование, которое относится не к выпускаемой продукции, а к выпускающей ее фирме. Не допускается регистрация Т.з., состоящих только из обозначений, представляющих собой: государственные гербы, флаги и эмблемы, сокращенные или полные наименования международных, межправительственных организаций; официальные контрольные, гарантийные и пробирные клейма, печати, награды и другие знаки отличия. Такие обозначения могут быть включены как неохраняемые элементы в Т.з., если на это имеется согласие соответствующего компетентного органа или их владельца. Т.з. охраняется законом и может быть переуступлен другим юридическим и физическим лицам по договорам в отношении всех или части товаров, для которых он зарегистрирован. Кроме того, право на использование Т.з. может быть предоставлено владельцем Т.з. (лицензиатом) другому лицу (лицензиату) по лицензионному соглашению. . Словарь экономических терминов 1 .

    Англо-русский экономический словарь > trade mark

  • 18 name of the producer

    Кабельные производство: наименование фирмы-изготовителя

    Универсальный англо-русский словарь > name of the producer

  • 19 SPD

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > SPD

  • 20 surge offering

    1. устройство защиты от импульсных перенапряжений

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > surge offering

См. также в других словарях:

  • наименование — 3.1.10. наименование: Слово или словосочетание, используемое для идентификации какого либо существа, предмета или класса Источник …   Словарь-справочник терминов нормативно-технической документации

  • Наименование и местонахождение изготовителя — 3.5.2 Наименование и местонахождение изготовителя [ юридический адрес , включая страну , и при несовпадении с юридическим адресом адрес ( а ) производств ( а )] и организации в Российской Федерации , уполномоченной изготовителем на принятие… …   Словарь-справочник терминов нормативно-технической документации

  • Наименование продукта — 3.5.1 Наименование продукта 3.5.1.1 Наименование должно быть понятным потребителю, конкретно и достоверно характеризовать продукт, раскрывать его природу, место происхождения, позволять отличать данный продукт от других. Наименование пищевого… …   Словарь-справочник терминов нормативно-технической документации

  • Продавец — (Seller) Профессия продавец, права и обязанности продавца Профессия продавец, права и обязанности продавца, правила поведения продавца Содержание Содержание Обозначение Профессия Права и обязанности Характеристика купли продажи и участие в нем… …   Энциклопедия инвестора

  • Обязанности продавца в части информирования покупателя при розничной торговле общие — продавец обязан своевременно в наглядной и доступной форме довести до сведения покупателя необходимую и достоверную информацию о товарах и их изготовителях, обеспечивающую возможность правильного выбора товаров, в которой по общему правилу должны …   Энциклопедический словарь-справочник руководителя предприятия

  • Особенности розничной продажи экземпляров фильмов, воспроизведенных на видеоносителях — при продаже воспроизведенных на кассетах, дисках и других видеоносителях экземпляров фильмов продавец обязан предоставить покупателю помимо соответствующих сведений общего характера (см. “Обязанности продавца в части информирования покупателя при …   Энциклопедический словарь-справочник руководителя предприятия

  • Косметика — Косметичка и косметические принадлежности Косметика (греч. κοςμητική  «имеющий силу приводить в порядок» ил …   Википедия

  • электрические характеристики НКУ — [Интент] Параллельные тексты EN RU The Standard IEC 60439 1 identifies the nominal characteristics to be assigned to each assembly, defines the environmental service conditions, establishes the mechanical requirements and gives prescriptions… …   Справочник технического переводчика

  • Взрывозащита вида «n» — Эта статья или раздел описывает ситуацию применительно лишь к одному региону. Вы можете помочь Википедии, добавив информацию для других стран и регионов. Взрывозащита вида «n» вид взрывозащиты заключающийся в том, что при конструировании… …   Википедия

  • МАРКА ПРОИЗВОДСТВЕННАЯ — клеймо (штамп), проставляемое на изделии или его упаковке в целях индивидуализации изготовителя. М.п. не регистрируется и применяется независимо от товарного знака. По законодательству РФ М.п. должна содержать полное или сокращенное наименование… …   Юридический словарь

  • ПРОИЗВОДСТВЕННАЯ МАРКА — клеймо (штамп), проставляемое на изделиях или на их упаковке в целях индивидуализации предприятия изготовителя. По законодательству РФ П.м. должна содержать полное или сокращенное наименование изготовителя, его местонахождение, сведения о… …   Энциклопедический словарь экономики и права

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»